
J .  Fluid M w ~ .  (1982), ~ 1 .  122, pp .  261-271 

Printed in  Great Bv-iiain 

261 

Numerical study of viscous flow in rotating 
rectangular ducts 

By CHARLES G. SPEZIALE 
Stevens Institute of Technology, Hoboken, NJ 07030 

(Received 21 Beptember 1981 and in revised form 23 February 1982) 

A numerical study of the laminar flow of an incompressible viscous fluid in rotating 
ducts of rectangular cross-section is conducted. The full time-dependent nonlinear 
equations of motion are solved by finite-difference techniques for moderate to rela- 
tively rapid rotation rates where both the convective and viscous terms play an 
important role. At weak to moderate rotation rates, a double-vortex secondary flow 
appears in the transverse planes of the duct whose structure is relatively independent 
of the aspect ratio of the duct. For Rossby numbers Ro c 100 this secondary flow is 
shown to lead to substantial distortions of the axial velocity profiles. For more rapid 
rotations (Ro c l), the Secondary flow (in a duct with an aspect ratio of two) is shown 
to split into an asymmetric configuration of four counter-rotating vortices similar to 
that which appears in curved ducts. It is demonstrated mathematically that this 
effect could result from a disparity in the symmetry of the convective and Coriolis 
terms in the equations of motion. If the rotation rates are increased further, the 
secondary flow restabilizes to a slightly asymmetric double-vortex configuration and 
the axial velocity wumes  a Taylor-Proudman configuration in the interior of the 
duct. Comparisons with existing experimental results are quite favourable. 

1. Introduction 
The development of secondary flows in pressure-driven flow through a straight pipe 

or duct that is subjected to a rigid rotation has long been recognized. Here the axis of 
rotation is perpendicular to the axial direction of the pipe or duct, which is long enough 
so that end effects can be suppressed. Consequently, the secondary flow is independent 
of the co-ordinate along the axial direction. The earliest work on this subject consisted 
of theoretical investigations of the weak-rotation case for laminar flow in circular 
pipes. Barua (1954), by using a perturbation approach, showed that for weak rotations 
the secondary flow consisted of a counter-rotating double-vortex configuration similar 
to that which occurs in a stationary curved pipe. He also derived a formula for the 
associated rise in the resistance coefficient of the pipe. A short time later, Benton 
(1956) calculated the effect of the Earth’s rotation on laminar flow in circular pipes. 
By using a perturbation expansion, he showed that the secondary flow consisted of the 
same type of double-vortex configuration that Barua had found. In addition, Benton 
calculated the distortion of the usual parabolic velocity profile that results from the 
presence of secondary flow. However, he wtw not able to observe the secondary flow 
directly since it was very weak. Subbequent to this study, Benton & Boyer (1966) 
examined the case of laminar flow in a rapidly rotating duct of arbitrary cross-section. 

9 FLM I22 
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Thie problem is not as difficult as the moderate rotation case since the flow in the 
interior of duct is approximately geostrophic. 

During the past decade, most of the research on this subject has been focused on the 
study of roll-cell instabilities or turbulence in rotating rectangular channels. For 
laminar flow in a rotating rectangular channel, Hart (1971) proved experimentally 
and theoretically (using a linear stability analysis) that at relatively rapid rotation 
rates an instability exists in the form of longitudinal roll cells of non-dimensional 
wavenumber five. At higher rotation rates, the flow restabilizes to a Taylor-Proudman 
regime where the gradient of the axial velocity along the axis of rotation in the interior 
of the channel is zero. Hart also showed that the problem of the stability of rotating 
channel flow is analogous to the stability of a temperature-stratified fluid. Johnston, 
Halleen & Lezius (1972) and Lezius & Johnston (1976) made a more comprehensive 
study of Taylor-type roll-cell instabilities for laminar and turbulent flows in a rotating 
channel. By using a linear stability analysis, they found that the critical disturbance 
mode for Iaminar flow occurred at a Reynolds number of 88-53 and a rotation number 
(i.e. the inverse Rossby number) of 0.5. At higher Reynolds numbers, they found 
instabilities for a range of rotation numbers between 0 and 3. Lezius & Johnston 
(1976) found that the onset of roll-cell instabilities for turbulent flow with Reynolds 
numbers between 6000 and 35 000 occurred at a rotation rate of 0-022 - a value which 
was in excellent agreement with the experiments that they conducted. 
Wagner & Velkoff (1972) conducted measurements for turbulent flow in a rotating 

rectangular duct and examined the developing flow from the entrance of the duct. 
More recently, there have been some numerical studies of turbulent flow in rotating 
rectangular ducts. Majumdar, Pratap & Spalding (1977) used the k-E model of turbu- 
lence and were able to obtain some results that were in good agreement with experi- 
ments for weak rotations. Howard, Patankar & Bordynuik (1  980) conducted further 
calculations with a modified k-E model where the effects of rotation were accounted for 
empirically in the transport equations for the turbulent kinetic energy and scalar 
dissipation rate. However, although these calculations do represent an important first 
step, more research is needed on turbulence modelling before this problem can be 
calculated in an accurate fashion. 

In  this paper, we will conduct a detailed numerical study of laminar flow in rotating 
rectangular ducts at moderate to relatively rapid rotation rates where both the 
convective and diffusive terms play an important role and, consequently, the full 
nonlinear equations of motion must be solved. As mentioned earlier, all of the previous 
calculations on rotating duct flow dealt with the two simplified limiting cases (i.e. with 
weak rotations or with strong rotations) or with the stability of channel flow (i.e. a 
large-aspect-ratio duct). We will concentrate our attention on the structure of the 
secondary flow and its effect on the axial flow in a low-aspect-ratio duct for a variety 
of Reynolds numbers and rotation rates. In order to test the numerical method used, 
the weak-rotation problem will be briefly studied first. For this case, it is shown that 
the usual counter-rotating double-vortex configuration for the secondary flow (where 
the lengthscale of the vortices is of the order of the width of the duct) occurs inde- 
pendently of the aspect ratio of the duct. However, as the rotation rate is substantially 
increased, this double-vortex configuration breaks down into an asymmetric con- 
figuration of four counter-rotating vortices that could result from a disparity in the 
symmetry of the convective and Coriolis terms. This occurs at  relatively rapid rotation 
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FIUURE 1. Secondary flow in a rotating rectangular channel as given in Hart (1971). 

rates (i.e. Rossby numbers of the order one). Further increases in the rotation rate lead 
to a restabilization of the secondary flow into a slightly asymmetric double-vortex 
configuration where the axial velocity assumes a Taylor-Proudman configuration in 
the interior of the channel. No previous calculations on rotating duct flow covered the 
Taylor-Proudman regime in detail. Also, in contrast to previous studies, we will 
calculate the time-dependent evolution of the secondary flow. Comparisons with 
existing experimental data and the prospects for future research will be discussed later. 

2. Formulation of the physical problem 
The problem to be considered is that of the laminar flow of an incompressible viscous 

fluid in a straight rectangular duct that is subjected to a steady rotation a. Here, the 
axis of rotation is perpendicular to the span of the duct (see figure 1) and the axial 
pressure gradient aP/& = -B is constant and is maintained by external means 
(P is the modified pressure, which includes the gravitational and centrifugal force 
potentials). The duct is sufficiently long so that there exists a central section of the 
duct where end effects are suppressed and the flow properties are independent of the 
axial co-ordinate z. In the absence of rotations, the fully developed velocity field v is of 
the unidirectional form 

v = (O,O, 'u,(z, Y)}, (2.1) 
9-2 
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where v, is determined from the Poisson equation (cf. Batchelor 1967) 

v2v, = -a lp .  (2.2) 

Equation (2.2), in whichp denotes the shear viscosity of the fluid, is solved subject to 
the no-slip condition that v, vanishes on the walls of the duct. This yields the classical 
quasi-parabolic profile for the axial velocity v,. However, for non-zero rotation rates, 
the fully-developed velocity field is three-dimensional relative to  an observer who 
rotates with the duct (cf. Hart 1971), i.e. v is of the form 

(2-3) 

where vz and v,, constitute the secondary flow. The vector velocity v is a solution of the 
Navier-Stokes equation and the continuity equation, which (relative to an observer 
Who is rotating with the duct) take the form 

v = {V&, Y), V y k  Y), %(2, Y% 

(2.4) 

where p is the density of the fluid, v = pip is the kinematic viscosity, SZ * Qj is the 
rotation rate of the duct, and P is the modified pressure, which satisfies the constraint 

1 

P 
g + v . v v  = --VP+vV~v-2SZxv, v . v  = 0, 

aplaz  = -G.  (2.5) 

Here, the time-dependent form of the Navier-Stokes equation has been maintained 
since we are going to study the evolution of the flow in time. By making use of (2.6) 
and the fact that the flow properties are independent of the axial co-ordinate Z ,  (2.4) 
takes the form 

au av -+- = 0, ax ay 
where 

u = v,, v =  vy, w = v,. 

(2.6a) 

(2.6b) 

( 2 . 6 ~ )  

(2.6d) 

As a result of the simplified form of the continuity equation (2.6d), there exists a 
stream function $ for the secondary flow such that 

Here $ is a solution of the Poisson equation 

since 
V2$ = 0, 

(2.10) 
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is the axial component of the vorticity. The axial vorticity u is determined from the 
z-component of the vorticity transport equation, which is given by 

(2.11) 

Equation (2.11) is obtained by taking the difference between the derivative of (2.6b) 
with respect to x and the derivative of ( 2 . 6 ~ ~ )  with respect to y. As a result of (2.9) it is 
quite clear that secondary flows result from a non-zero axial vorticity u. Consequently, 
it is obvious that the Coriolis term 2R aw/ay, which serves as an axial vorticity source 
term in (2.1 l), is the driving mechanism for the creation of secondary flow in a rotating 
duct. 

Since the flow properties depend on only two spatial co-ordinates, a modified vorti- 
city-streamfunction approach waa chosen for this numerical study. More specifically, 
the axial momentum equation ( 2 . 6 ~ )  will be solved numerically coupled with the axial 
vorticity transport equation (2.11), the Poisson equation (2.9) for the secondary flow, 
and the secondary-flow velocity relations (2.8). The problem will be cast in dimension- 
less form by the use of a lengthscale D and a velocity scale W,, which are, respectively, 
the width of the duct (see figure 1) and the integrated average axial velocity. In 
dimensionless form, the governing equations to be solved take the form 

aw aw aw 1 1 
-+u-+v- = C+ EQ’W +ZU, at ax ay 

(2.12a) 

(2.12b) 

Q2$ = W ,  (2.12c) 

(2.124 e) 

where all of the field variables are scaled with respect to W, and D. In (2.12), C is the 
dimensionless pressure gradient, Re is the Reynolds number, and Bo is the Rossby 
number, which are given respectively by 

(2.13) 

At this point, we will introduce another dimensionless number, namely the Ekman 
number E, which is given by 

and will be of use for the comparisons with experimental data that will be made later. 
The coupled system of nonlinear partial differential equations (2.12) is solved 

subject to the boundary conditions 

u = o ,  v = o ,  w = o ,  $ = O ,  (2.14) 

on the walls of the duct. The boundary conditions on the axial vorticity u must be 
derived (i.e. they will be obtained by a Taylor expansion), and we will do that in $3. 
In so far as the initial conditions are concerned, two different problems will be 
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considered. We will consider the problem of starting flow where the pressure @ d e n t  
-B is impulsively applied in a steadily rotating framework. For starting flow, the 
initial conditions for (2.12) are 

u = o ,  v = o ,  w = o ,  w = o ,  $ = O  (2.15) 

at t = 0. The other initial-value problem to be considered is that of fully-developed 
laminar flow in a stationary duct that is subjected to an impulsively applied angular 
velocity. For this problem, the initial conditions that must be applied to (2.12) are 

u = o ,  v = o ,  w=w1, w = o ,  $ = O ,  (2.16) 

at t = 0, where w1 is the classical quasi-parabolic velocity profile obtained from (2.2). 
Of course, both initial-value problems have the Same steady-state solution. In 8 3 a 
detailed discussion of the numerical approach used will be presented. 

3. Numerical approach 
Since the geometry of the problem is rectangular, the finite-difference method was 

used where the cross-section of the duct was discretized into an M x N rectangular 
grid. The axial momentum and vorticity transport equations (2.12a, b) were solved 
by a modified form of Arakawa’s method that utilizes the DuFort-Frankel scheme for 
the diffusion terms. Arakawa’s method is advantageous since it is a fourth-order- 
accurate explicit-difference scheme which has no boundary-condition problems (see 
Roache 1972). The scheme, within the context of this problem, conserves w, wa, w, 
and w* (as well as the total kinetic energy) and is, furthermore, not subject to nonlinear 
instabilities that arise from aliasing errors (all aliasing errors are bounded). In  Ara- 
kawa’s method, the convective derivative of any field variable @ is represented as 
follows : 

- ($tj+l-$Xj-l) (@?+l,j- @?-l,j) 

+ $?+1A@?+1,j+1- @?+1,3-1) - $?-1,3(@L,j+1- @?-l,f-l) 

+ $&-l(@?+l,j-l- @?-1,3-1) + @%+1($?+1,j+1- $?-lJ+l) 

- @&-l($?+l,j-l- $?-l,j-l) 

- $2 3+1 (@?+l, 5 + l -  @?-l, 3+1) 

- @~+l,j($?+l,j+l-$?+l~j-l) -k @?-l,j($~-l,j+l-$?-l,j-~)], (3-1) 

where Ax and Ay are respectively the grid lengths in the x- and y-directions, At is the 
time interval, and 

@& = @(iAx, jAy, nAt), @Zj = $(iAx, jAy, nAt) 

( n = O , l ,  ..., i = O , l ,  ..., M ,  j = O , l ,  ..., N ) .  (3.2) 
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The axial momentum equation and vorticity-transport equation are solved in the 
finite-difference form 

where the convective derivatives are formulated by Arakawa's method (3.1). The 
viscous-diffusion terms are formulated with the DuFort-Frankel scheme, which is 
second-order accurate (see Roache 1972). For stability purposes, the Coriolis terms are 
centred in time and the spatial derivative of w is central-differenced for second-order 
accuracy. It should be clear to the reader that (3.3) constitutes an explicit finite- 
difference scheme. 

The Poisson equation ( 2 . 1 2 ~ )  is solved in the standard second-order-accurate 
finite-difference form 

The solution of (3.4) is accomplished by using a compact non-iterative Poisson solver 
due to Buneman (1969) that employs cyclic reduction. This Poisson solver is extremely 
efficient since it was constructed for use in rectangular domains and suffers only from 
the minor inconvenience of requiring that M and N be powers of 2. The secondary- 
flow velocities, which are determined from (2.12d), are solved in the second-order- 
accurate central-difference form 

Equations (3.3)-(3.5) represent the complete finite-difference formulation of the 
governing equations of motion (2.12). These equations are supplemented with the 
boundary conditions (2.14) and the initial conditions (2.15) or (2.16). As mentioned 
earlier, the boundary conditions for the axial vorticity must be derived. This was 
accomplished by a second-order-accurate Taylor expansion of (2 .12~)  in the Vicinity 
of the walls of the duct, which yields the boundary conditions 

(3.6a, b )  

(3.6c, d) 

After each iteration, the boundary conditions on o must be updated by using (3.6). I C  
should be quite clear that the complete formulation of the problem is second-order 
accurate, i.e. the truncation error T goes as 

(3.7) 
where 11 11 denotes any suitable norm. 

1 1 ~ 1 1  = O(Ata, Ax2, Ay') 
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Calculations were conducted for 2 x 1 ducts and 8 x 1 ducts (i.e. ducts with an 
aspect ratio HID of 2 and 8), the latter of which is quite often used to simulate channel 
flow experimentally (cf. Hart 1971). A 2 x 1 duct was chosen since it has the smallest 
aspect ratio that allows for the development of vortices whose characteristic length 
(in any direction) is of the order of the width of the duct - a property that the 
secondary flow haa in ducts with larger aspect ratios. For the 2 x 1 duct, we selected 
either M = 16 and N = 32 or M = 32 and N = 64, depending on the strength of the 
rotation (M and N must be powers of two in order to use the high-speed Poisson 
solver). For the 8 x 1 duct, we selected M = 16 and N = 128. The stability criterion 
used was the standard one obtained by a simple superposition of the generalized CFL 
condition and von Neumann stability criterion, which are derived from a local 
linearized stability analysis. More specifically, At was chosen to satisfy the constraint 

which in practice was applied with a safety factor of two. For most of the calculations 
conducted, convergence to three significant figures was obtained in 600 to 2000 
iterations, the latter number representing the extreme case when the secondary flow 
was strong so that (3.8) became more restrictive. These calculations required from 
5 min to 1 h on a DEC system-10 computer. 

Calculations were conducted for a variety of Reynolds numbers and Rossby 
numbers, mostly in the ranges 

0 c Re c 500, 10-l c Ro < lo*. (3.9) 

Consequently, the flow was strongly laminar and the rotation rates were moderate to 
relatively rapid (namely, in the intermediate range between negligibly weak rotations 
and strong rotational geostrophic flow). For water (at room temperature) flowing in 
a duct with a width D = 1.92in with the physical properties v = 1.1 x 10-5ft2/s, and 
p = 1-936slugs/ft9 these Rossby numbers correspond to the following range of 
rotation rates: 

< < 1 (rad/s). (3.10) 

In  $ 4  we will examine the numerical results obtained in complete detail. 

4. Numerical results and comparisons with experiments 
Initially, we examined the time-dependent evolution of secondary flow in a 2 x 1 

duct for the problem of starting flow in a rotating framework. In figures ~(cI-G'), 
computer-generated contour maps of the streamlines relative to an observer looking 
upstream are shown at various times for Re = 86 and Ro = 1.85 corresponding to the 
fully-developed rotating flow. Dimensional values of time as well as those for the 
angular velocity correspond to water (at room temperature) flowing in a duct with a 
characteristic length D 1: 2 in. These values of SZ will be useful later in studying the 
effect of a continuous increase in angular velocity on a given axial flow. It is quite 
clear that these calculations indicate that the secondary flow starts as a double- 
vortex configuration that is strongly compressed against the cpper and lower walls of 
the duct. This compressed double-vortex secondary flow then diffuses to the interior 
of the duct where it assumes a fully-developed configuration (see figure 2 4  that is in 
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FIQTJRE 2. Computer-generated contour maps of the secondary-flow streamlinea in a 2 x 1 duct 
at various times for starting flow. Re = 86, Ro = 1.85 (a = 0.01 rad/s, a = 1 x lo4 lb/ft*). 
(a) t = 18,  (b )  5 S, (c) 25 S, (d )  fully-developed. 

excellent qualitative agreement with the calculations of Hart (1971) shown in figure 1. 
Approximately 600 s were required to obtain a fully-developed flow (i.e. convergence 
to three significant figures); however, most of the qualitative changes occur in the 
first 100s. The reader should note that for all of the computer-generated contour maps 
presented in this paper, a vortex on a shaded background indicates a counterclockwise 
rotation and a vqrtex on a white background indicates a clockwise rotation. Further- 
more, since these contour maps were produced on the line printer, the aspect ratio of 
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FIGURE 3. Computer-generated contour map of the fully-developed secondary flow streamlines 
in an 8 x 1 duct. Re = 107, Ro = 2.3 x 103 (a = rad/s, B = 6 x lb/fta). 

the channel was not made to scale because of the considerable inconvenience that 
would be involved. However, this has little ill effect since the streamline patterns only 
serve the purpose of providing a mechanism to observe the qualitative structure of the 
secondary flow. 

Calculations were conducted for an 8 x 1 duct (which is quite often used to simulate 
channel flow) for Re = 107 and Ro = 2.3 x 103, which constitutes a weak rotation. 
Again, the fully-developed secondary-flow streamlines (which are shown in figure 3) 
consist of a counter-rotating double-vortex configuration (one vortex located at the 
upper and lower wall) where each vortex has a uniform lengthscale of the order of the 
width of the duct D. These calculations, along with those conducted for intermediate 
cases, indicate that this is true for any duct with an aspect ratio H I D  2 2 which is 
subjected to weak or moderate rotations. However, when more rapid rotations are 
applied to 8 large-aspect-ratio duct this double-vortex secondary flow spreads a 
larger distance into the interior of the duct. To illustrate this point, the fully-developed 
secondary flow in an 8 x 1 duct for Re = 105 and Ro = 2-25 is shown in figure 4. This is 
a stable, but relatively rapid, rotation (according to the results of Lezius & Johnston 
(1976) this flow would become unstable to longitudinal roll cells when Ro 21 2.0). It is 
quite clear in this case that the secondary flow has a significant effect in a horizontal 
layer of thickness 2 0  (twice the distance for the weak to moderate rotation case) near 
the upper and lower walls of the duct. Thus, the magnitude of the secondary flow 
relative to the axial flow near the horizontal centreline of the 8 x 1 duct is substantially 
larger here than for the weak- to moderate-rotation case. Specific numerical values are 
as follows: 

(4.1) (a) #H < y < $H,  Re = 107, Ro = 2-3 x lo3, Iu, 4 m a x  = 4 10-7; 

(a) +H < y < $H, Re = 105, Ro = 2.25, = 3 x (4.2) 

Wmnx 

Wmax 
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FIUURE 4. Computer-generated contour map of the fully-developed secondary-flow streamlines 
in an 8 x 1 duct. Re = 105, Ro = 2.25 (a = 0.01 rad/s, a = 6 x lb/fta). 

Since the calculations conducted here indicate that the magnitude of the secondary flow 
must be of the order of 1 yo of the axial flow to have a significant effect, they do support 
the usual assumption made in experiments that secondary flows are of little con- 
sequence near the centreline of a duct whose aspect ratio exceeds 6 or 7. 

Now, we will examine the effect of moderate to relatively rapid rotations on the 
axial flow in a 2 x 1 duct. In  figure 5, the ratio of the flowrate Q for a stationary duct 
to the flowrate Q, for a rotating duct (with the same applied pressure gradient) is 
plotted versus the Reynolds number of the rotating flow for various rotation rates 0. 
The range of Reynolds numbers 0 < Re < 100 for these rotation rates correspond to 
the range of Rossby numbers 0 < Ro < 2.15. It is quite clear that the rotations lead 
to a substantial reduction in the flow rate of amounts varying from 1 0 4 0 % .  
Unfortunately, no theoretical or experimental results were available on the rectangular 
duct for comparisons. However, as shown in figure 5,  for low Reynolds numbers and 
rotation rates the numerical values obtained for &/&, are in the range of those values 
obtained by Barua (1954) for a circular pipe. While a direct comparison cannot be 
made between the precise numerical values of both cases because of the difference in 
geometry, one would expect the values to be in the same range as a result of the 
similarity in the structure of the two flows (i.e. the axial velocity in the duct is quasi- 
parabolic and the secondary flow consists of two counter-rotating vortices as in the 
case of the circular pipe). 

The fully-developed axial-velocity profiles at the horizontal and vertical centre- 
lines of the 2 x 1 duct are shown in figures 6(a, b )  for Re = 235 and Ro = 50.5 (0 
= 0.001 rad/s). It is quite clear that the secondary flow causes anoticeable distortion in 
these profiles even though its magnitude is only approximately 1 yo of that of the 
axial flow. The axial velocity at the horizontal centreline of the duct (shown in 
figure 6a)  is asymmetric with its maximum velocity shifted toward the low-pressure 
side of the duct (i.e. the side of the duct closest to the axis of rotation), consistent with 
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52 = 0.1 rad/s 

0.075 rad/s 

0.05 rad/s 1 
0.025 rad/s 

Q/Qr 1 * 0.01 rad/s 
1 .o 

X Theoretical result 
of Barua ( 1954) 
for circular pipe 

0 50 100 
Re 

FIUURE 6. Ratio of the flow rate in a stationary 2 x 1 duct to the flow rate in a rotating 2 x 1 duct 
as a function of the Reynolds number and the rotation rate. 

1 .o 

0.5 

0 

wfW, for 51 = 0401 
(Ro = 505) 

w/Wo for S2 = 0 

Re = 235 
(for rotating flow) 

urmxlw,, = 0.01 5 

YIH = 1 

rad/s 

WlWO 
FIUURE 8 (a).  For caption see facing page. 

the results of Benton (1956) and Lezius & Johnston (1976). The axial velocity at the 
vertical centreline of the duct is symmetric but begins to flatten in the central region 
of the duct (see figure 6b). From the governing equations of motion (2.12) it is a simple 
matter to show that the axial velocity must be symmetric about the centre of any 
vertical axis in the duct. In figures 6 (a, b), the corresponding laminar velocity profiles 
are also shown in the absence of rotations. Consistent with the previous results, there 
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- ( b )  
- w/W, for SZ= 0.001 rad/s 

(Ro = 50.5) 

0.5 

0 0.5 1 .o 1.5 2.0 

= 0.015 

w/wo 
FIQUFLE 6. Axial-velocity profiles in a 2 x 1 duct for Re = 236 and Ro = 60.6 (a = 0.001 rad/s, 
U = 2.6 x lb/fts): (a) along the horizontal centreline of the duct; (a) along the vertical 
centreline of the duct. 

is a noticeable decrease in the flowrate through the duct. The same corresponding 
axial-velocity profiles are shown in figures 7(a ,  b) for a 2 x 1 duct with Re = 86 and 
Ro = 1.85 (Q = 0.01 radls). Since, for this case, the magnitude of the secondary flow 
is approximately 7 yo of that of the axial flow the distortions just discussed are even 
more striking. More specifically, the axial velocity at the horizontal centreline of the 
duct is highly asymmetric, the axial velocity at the vertical centreline of the duct is 
noticeably flattened in the central portion of the duct, and there is a substantial 
reduction in the flow rate. For both of these cases, the secondary flow consists of the 
same type of double-vortex configuration shown in figure 2 (d). 

When the rotations become more rapid (i.e. Ro c 1) and the Reynolds number is 
large enough, the double-vortex configuration for the secondary flow in a, 2 x 1 duct 
breaks down into a configuration of four counter-rotating vortices that is asymmetric 
with respect to the vertical centreline of the duct. This probably.results from a 
disparity in the symmetry of the convective and Coriolis terms (combined with the 
viscous terms) corresponding to the standard double-vortex secondary flow. More 
speciiically, for a weak double-vortex secondary flow, the flow field has the following 
symmetries (in a strong approximate sense) relative to an (2, y)-co-ordinate system 
with origin at the geometric centre of the duct: 

(4.3) I 42, y) = (4-2, y), o(2, Y) = -42, -?I), 

a@, y) = u( - 2, y), N X ,  Y) = u(2, - Y), 
N2, y) = - 4 - 2, y), 42, Y) = -ax, - Y), 
w(x, Y) = w( -2, Y), 9) = 4 x 9  -Y). 

Furthermore, the derivative of a symmetric function with respect to a given variable 
is antisymmetric with respect to that variable and vice versa, e.g. 
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Consequently, the right-hand side of (2.12b) given by 

1 i aw 
Re RO ay 

RHS =-V'W+-- 

has the same symmetry properties as w and aw/at, i.e. 

(4.5) 

RHS(x, y) = RHS( -z,Y), RHS(x, 9) = -RHS(z, -y). (4.6) 
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However, the convective terms in (2.12b), 

have a different symmetry. From (4.3) it is a simple matter to show that 60/& is an 
antisymmetric function of x and y, i.e. 

Thus, when the convective terms play an important role, the vorticity field will no 
longer be approximately symmetric about the vertical centreline of the duct, and the 
classical symmetric double-vortex configuration shown in figure 1 will ceaae to  be a 
solution to  the governing equations. The calculations conducted herein indicate that 
this occurs when 

which is within the range of Ro and Re when longitudinal roll cells occur in rotating 
channel flow (see Lezius & Johnston 1976). At this point, it should be noted that, as a 
result of the symmetry of u in (4 .3b) ,  it is quite clear from (2.12a) that the asymmetry 
of the axial-velocity profiles along the horizontal centreline of the duct must be a 
consequence of the convective terms. This asymmetry in the axial-velocity profiles 
surfaces at higher Rossby numbers since the convective terms in the axial momentum 
equation (2.12a) are linear in the secondary flow velocities, unlike in the axial vorticity- 
transport equation. 

Now, we will present numerical results that illustrate the breakdown of the double- 
vortex secondary flow and we will examine its effect on the axial flow. In figures 8 (A), 
computer-generated secondary-flow streamlines are shown, at various times, for an 
initially fully-developed laminar flow in a stationary 2 x 1 duct that is subjected to an 
impulsive rotation (Q = 0.1 rad/s). The resulting fully-developed rotating flow 
corresponds to Re = 279 and Ro = 0.6. From these results, it is quite clear that in this 
case the secondary flow starts as a double-vortex configuration and then breaks down 
into a configuration of four counter-rotating vortices that are not symmetric with 
respect to the vertical centreline of the duct (see figure 8 4 .  This resulting secondary 
flow is almost identical with that obtained in curved rectangular ducts at higher Dean 
numbers as shown in figure 9 (see Cheng, Lin & Ou 1976). There is no question that 
this flow is real, since the same results were obtained when the grid was refined (with 
the time step reduced) and when the flow field was perturbed during the calculation. 
Consequently, this secondary-flow configuration is stable with respect to disturbances 
in the transverse plane of the duct. The axial-velocity profiles a t  the horizontal and 
vertical centrelines of the duct are shown respectively in figures 10(a, b). Again, the 
axial velocity at the horizontal centreline of the duct (see figure 10a) is substantially 
distorted, with its maximum velocity shifted toward the low-pressure side of the duct. 
However, a point of inflexion occurs on the high-pressure side of the duct (which may 
be indicative of an instability with respect to longitudinally varying disturbances) 
similar to that which occurs in a curved rectangular duct (see Cheng et al. 1976). This 
is the side of the duct where longitudinal roll cells occur in rotating channel flow. The 
axial-velocity profile at the vertical centreline of the duct (see figure 1 Ob) is symmetric 
and flat with the exception of peaks located near the upper and lower walls of the duct 

Ro - 1, Re B 1, 
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. . . . . . . ... 

( C )  ( d )  
FIQWE 8. Computer-generated contour maps of the secondary-flow streamlines in a 2 x 1 duct 
at various times for an initially fully-developed flow subjected to an impulsively applied rotation. 
Re = 279, Ro = 0.6 (a = 0.1 rad/s, G = 6 x 10y4 lb/ft3): (a) t = 1 s, (b)  12.5 8, ( c )  75 8, (d )  fully- 
developed. 

and at its centreline. This profile is similar to those obtained for rotating channel 
flow in the presence of longitudinal roll cells (see Hart 1971). 

If the angular velocity of the duct is now increased to Q = 0.2 rad/s while main- 
taining the same pressure gradient (this yields Re = 220 and Ro = 0.24 for the fully- 
developed rotating flow) the subsidiary counter-rotating vortex pair that was present 
on the high-pressure side of the duct (see figure 8 d )  disappears and the secondary flow 
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FIGURE 9. Secondary-flow streamlines in a curved square duct 
obtained by Cheng et al. (1970). 
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FIGURE 10(a). For caption see p. 268. 
W l W ,  

restabilizes to a slightly asymmetric double-vortex configuration as shown in figure 11. 
Furthermore, the point of inflexion in the axial-velocity profile along the horizontal 
centreline of the duct disappears (see figure 12a). The axial-velocity profile along the 
vertical centreline of the duct (shown in figure 12b) assumes a Taylor-Proudman 
configuration in the interior of the duct (i.e. the axial velocity does not vary along the 
direction of the axis of rotation in the interior of the duct). The two peaks in this 
axial-velocity profile near the upper and lower walls of the duct have their maximum 
values at a distance approximately equal to 2EtD from each wall, which is consistent 
with the position of the overshoot obtained from the theory of the linear Ekman layer 
(see Hart 1971). This is not surprising since at  relatively rapid rotations the secondary 
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- w/Wo for 51 = 0.1 rad/s 
(Ro = 0.6) 

0 0.5 1 .o 1-5 2.0 

WlWO 
FIQURE 10. Axial-velocity profiles in a 2 x 1 duct for Re = 279 and Ro = 0.6 (a = 0.1 rad/s, 
a = 6 x lO-&lb/ftS): (a) along the horizontal centreline of the duct; ( b )  along the vertical 
centreline of the duct. 

FIQURE 11. Computer-generated contour map of the fully-developed secondary flow streamlines 
in a 2 x 1 duct. Re = 220, Ro = 0-24 (a = 0.2 radls, c f  = 6 x lb/fts). 

flow can be thought of as originating from Ekman suction as discussed in Hart (1971). 
The axial-velocity profile along the vertical centreline of the duct obtained numerically 
is thus in excellent qualitative agreement with experiments (see Hart 1971, figure 4e). 
To the best knowledge of the author, these are the first complete calculations to 
illustrate the restabilization of flow in a rotating rectangular duct to a Taylor- 
Proudman regime. 
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- w/Wo for SZ = 0.2 nd/s  
(Ro = 0-24) 
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FIGURE 12. Axial-velocity profilea in a 2 x 1 duct for Re = 220 and Ro = 0-24 (a = 0.2 rad/s, 
B = 6 x 10-O lb/fta): (a) along the horizontal centreline of the duct; (b)  along the vertical 
centreline of the duct. 

5. Summary and conclusions 
A numerical study of laminar flow in rotating rectangular ducts has been conducted 

utilizing finite-difference techniques. For weak to moderate rotation rates (with 
HID z 2) it was shown that the resulting secondary flow consists of a counter-rotating 
double-vortex configuration (one vortex located at the upper and lower walls of the 
duct) where the diameter of the vortices is of the order of the width D of the duct. 
Provided that the Rossby number Ro > 100, the secondary flow was found to have 
only a mild distortional effect on the axial velocity. A thorough study of the effect of 
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secondary flow on the axial velocity in a 2 x 1 duct was conducted for 1 < Ro < 100 
with 0 c Re < 600, and it was found that the axial velocity is substantially distorted 
by the presence of secondary flow. More specifically, the axial velocity along the 
horizontal centreline of the duct was highly asymmetric, with its maximum value 
shifted toward the low-pressure side of the duct, and the axial velocity along the 
vertical centreline of the duct was flattened near the central portion of the duct. 
Furthermore, there was a substantial reduction in the flow rate as a result of the 
secondary flow. For all of the calculations presented herein where Ro > 1, the 
secondary flow consisted of the standard double-vortex configuration shown in 
figure ( 2 4 .  

For slightly more rapid rotations (i.e. for Ro < 1) and sufficiently high Reynolds 
numbers (Re % 1) the double-vortex secondary flow was shown to break down into an 
asymmetric configuration of four counter-rotating vortices similar to that observed 
in curved rectangular ducts at  higher Dean numbers. The axial velocity along the 
horizontal centreline of the duct was asymmetric as in the previous cases. However, 
in contrast, a point of inflexion appeared on the high-pressure side of the duct where 
roll-cell instabilities are observed in channel flow at comparable Rossby and Reynolds 
numbers. If the rotation rate is increased further, the flow restabilizes to a slightly 
asymmetric double-vortex configuration and the point of inflexion disappears in the 
axial velocity, which now assumes a Taylor-Proudman configuration in the interior 
of the channel. The numerical results obtained, which, to the best knowledge of the 
author, are the first calculations to demonstrate the breakdown of the double-vortex 
secondary flow and the restabilization to a Taylor-Proudman regime, appear to be 
in excellent agreement with experimental observations. 

The analysis presented in this study tends to indicate that the presence of a sub- 
sidiary counter-rotating vortex pair on the high-pressure side of a 2 x 1 duct is a 
natural consequence of the Navier-Stokes equations (i.e. they result from a disparity 
in the symmetry of the convective and Coriolis terms). These subsidiary vortices 
occur when Ro - 1 and Re % 1. If a given axial flow is subjected to continuous in- 
creases in the angular velocity SZ, the flow will restabilize since the Reynolds number 
decreases as a result of the Coriolis terms, and consequently the convective terms 
become less dominant. It should be mentioned at this point that the four-vortex 
solution could constitute a bifurcation, i.e. a non-uniqueness of solutions. As discussed 
in $4, when the convective terms play a dominant role (i.e. when Ro - 1 and Re % 1) 
the classical symmetric double-vortex configuration for the secondary flow shown in 
figure 1 will cease to be a solution of the equations of motion. However, it is possible 
for an asymmetric double-vortex configuration (such as that shown in figure 11) to 
co-exist with the four-vortex configuration as non-unique solutions to the governing 
equations of motion. Such a bifurcation of solutions has been established for the case 
of laminar flow in a curved circular tube by Dennis & Ng (1982) in an interesting paper. 
More research would be needed to establish anything definitive concerning this issue 
of bifurcations in the present problem. Nevertheless, this is a topic that would be well 
worth pursuing in the future. 

Future research is needed concerning the stability of this asymmetric four-vortex 
mode to longitudinal disturbances, since a point of inflexion occurs in the axial-velocity 
profiles. Such a study, which will be complicated because of the full three-dimensional 
form of the resulting disturbance equations, is beyond the scope of the present paper. 
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More experimental studies are also needed on rotating flow in low-aspect-ratio 
rectangular ducts for Rossby numbers Ro N 1. There is a noticeable lack of experi- 
mental data on this problem. In conclusion, the numerical results of this study indicate 
that there is a wealthof interesting physical phenomena associated with laminar flow in 
rotating rectangular ducts that are not fully understood. A better understanding of 
these phenomena is essential if real progress is to be made on the more complicated 
turbulent version of this problem which can have important technological applications 
in the design of turbomachinery. 

The author would like to thank Dr Gareth Williams for some valuable comments 
concerning the numerical method used and Miss Joanne Fendell for running the 
computer programs. This work was supported by the National Science Foundation 
under Grant No. ENG 79-08180. 

REFERENCES 
BARTJA, 5. N. 1954 Secondary flow in a rotating straight pipe. PTOC. R. SOC. Lond. A227, 

133-139. 
BATCHELOR, G. K. 1967 Introduction to Fluid Dynumia. Cambridge University Press. 
BENTON, G. S. 1956 The effect of the earth’s rotation on laminar flow in pipes. J. Appl. Mech. 

BENTON, G .  S. & BOYER, D. 1966 Flow through a rapidly rotating conduit of arbitrary cross- 

BUNEMAN, 0. 1969 A compact non-iterative Poisson solver. Stanford Univ. Imt. for Plasma Res. 

CHENQ, K. C., LIN, R. C. & On, J. W. 1976 Fully-developed laminar flow in curved rectangular 

DENNIS, S. C. R. & Nay M. 1982 Dual solutions for steady laminar flow through a curved tube. 

HART, J. E. I 1971 Instability and secondary motion in a rotating channel flow. J. Fluid Mech. 

HOWARD, J. H., PATAN-, S. V. & BORDYNUIK, R. M. 1980 Flow prediction in rotating ducts 
using Coriolia-modified turbulence models. Trans. A.S.M.E. I, J .  Fluida Engng 102, 
456-461. 

JOHNSTON, J. P., -EN, R. M. & LEZIWS, D. K. 1972 Effects of spanwise rotation on the 
structure of two-dimensional fully developed turbulent channel flow. J. FZuid Me&. 56, 
533-557. 

LEZITJS, D. K. & JOHNSTON, J. P. 1076 Roll-cell instabilities in rotating laminar and turbulent 
channel flow. J. Fluid Mech. 77, 153-175. 

MAJTJMDAR, A. K., PRATAP, V. S. & SPALDINU, D. B. 1977 Numerical computation of flow in 
rotating ducts. Tram. A.S.M.E. I, J .  Fluids Engng 99, 148-153. 

ROACHE, P. J. 1972 Cornptatwnal Fluid Dynamics. Hermosa. 
WAUNER, R. E. & VELKOFF, H. R. 1972 Measurements of secondary flows in a rotating duct. 

23, 123-127. 

section. J. Fluid Mech. 26, 69-79. 

Rep. SUIPR no. 294. 

channels. Tram. A.S.M.E. I, J .  Fluids Engng 98, 41-48. 

Q. J .  Mech. Awl.  Math. (to appear). 

45, 341-351. 

Trans. A.S.M.E. A, J .  Ewpg  Power 95, 261-270. 


